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SINGULAR SOLUTIONS FOR SHALLOW SHELLS
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and
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Departments of Civil Engineering and Engineering Mechanics, Clemson University,
Clemson, South Carolina

Abstract-Solutions are developed for non-axially symmetric shallow shells subjected to normal surface loading
or thermal loading. The singular solutions which correspond to the concentrated normal load, the concentrated
application of heat and the concentrated thermal gradient are identified by a consistent limiting process applied
to the complete set of singular solutions. Numerical results are presented for the case of the normal concentrated
load acting on shallow shells having negative, zero or positive Gaussian curvature.

The behavior of the shallow shells in the neighborhood of the applied concentrated load is seen to be similar
to that of a disc subjected to the same load The influence of the concentrated load is felt over a wider region
in shells of negative Gaussian curvature compared to shells of positive Gaussian curvature. However, for the case
of the concentrated load, the stress and deflection parameters of the shell do not change dramatically as the
Gaussian curvature of the shell is varied from positive to negative values.
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arbitrary constants of solution '1
principal radius of curvature of shell at its vertex, lying in xz plane
constants whose value depends on m, n
principal radius of curvature of shell at its vertex, lying in yz plane
K

2/2a2

membrane stiffness Etl(l- v2
)

Young's modulus
bending stiffness Et3/(1- v2 )

distributed normal loading
functionJr, solution to differential equation
radial coordinate
parameter in solution for '1
average temperature across section of shell
temperature difference between two surfaces of shell
thickness of shell
displacement tangent to shell along meridian 0 = const.
displacement tangent to shell along circle r = const.
displacement normal to shell; positive w has principal component in positive z direction
rectangular Cartesian coordinates
I-alb
thermal coefficient of expansion
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alb
shear strain
rtl)..

normal strains
const., part of exponent of;
complex stress function
angular coordinate
12(1- v2)/(alt)2
(1 +alb)/2
intensity of plane hot spot
intensity of bending hot spot
Poisson's ratio
dimensionless radial coordinate = J(i)cr
particular value of radial coordinate r at boundary of shell
stress function
parameter in solution 1/
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INTRODUCTION

THE bending theory of thin elastic shells involves a set ofequations of sufficient complexity
so that there is no simple general solution. However, ifone restricts the slope of the shell to
small values, thereby obtaining a "shallow shell", great simplifications are possible in the
general shell equations, and these simplified equations open up an avenue through which
the behavior of a more general shell may be explored. Of particular interest among the
solutions to the shallow shell equations are those singular solutions which represent
concentrated forces and concentrated areas of heating. Since almost any shell has a small
slope within a restricted region, the solutions for concentrated loads applied to shallow
shells can also be considered to be the solutions, in a localized region, for a more general
shell having the same geometry around the point of loading as does the shallow shell.

Many investigators have made significant contributions to the development of the
shallow shell theory, and in particular, to the identification of the singular solutions which
represent concentrated loading or heating. Chernyshev [1] has proven that the dominant
part of the singular solution corresponding to the application of a concentrated force or
moment on a general shell is the same as that for the same loading applied to a flat plate.
Among those who have developed and identified singular solutions for special geometrical
forms are Young [12J who developed a wide range of solutions for a spherical shell; Fliigge
and Conrad [5J who presented singular solutions for thermal "hot spots" applied to
cylindrical shells; Sanders and Simmonds [8J, who obtained the solution for a concentrated
normal force applied to a shallow cylindrical shell; and Forsberg and Fltigge [3J, who
investigated the solution for point loads applied to elliptical shells. A recent paper by
Sanders [9] presents a unified treatment of the shallow shell equations with solutions in
the form of Fourier transforms.

The objective of this paper is to present the solutions for a concentrated normal force
and for concentrated heating applied to nonaxisymmetric shallow shells, and in particular,
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to show the influence of shell geometry on the nature of the singular solutions throughout
the shell.

BASIC EQUATIONS

The basic partial differential equations which govern the behavior of shallow shells can
be reduced to a pair of equations for a stress function <I> and the normal displacement w.
The equations are [4] :

where

(1)

and

Et
D=-l2'-v

the membrane stiffness

the bending stiffness

a differential operator

a differential operator

a differential operator

q = distributed load normal to shell surface;
~ = coefficient of thermal expansion;
T = average temperature over a section of shell ;
T = temperature difference between inner and outer shell surface.
Figure 1 shows the basic coordinate system used in these expressions.

Although the differential equations do not place a restriction on the shell geometry,
apart from that of the shallow shell assumptions, we will restrict our investigation to para­
boloids expressed by:

1 2 1 2
Z = 2a x - 2bY .

Here a and b are the two principal radii of curvature of the shell at its apex, and if both
are positive, the equation describes a shell of negative curvature-a hyperbolic paraboloid.
The cylinder is described by the equation when b -+ 00, and a sphere is described when
b = -a.
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FIG. 1. Coordinate system for shallow shell.

We seek first to obtain solutions for the homogeneous equations, and therefore set
q = T = T O. The two 4th-order equations (1) may then be linearly combined in two
different ways [3J, thereby producing a single 4th-order equation:

iK
2

V4rt+-Qrt = 0
a

where

a

and rt can have either of the definitions:

(2)

K 2

rt = <I>-iK-w
a

or
K

2

rt = K-w+i<I>.
a

(3a)

(3b)

(4)

The solution to the single 4th-order equation (2) thus produces the full set of solutions to
the pair of equations (1) when both definitions of rt in equation (3) are used in turn to define
the dependent variable.

Coordinate system

Although the basic differential equations were developed in Cartesian coordinates, we
are here faced with the necessity of finding a coordinate system which will permit a separa­
tion ofvariables and will also permit a straightforward method of producing and identifying
singular solutions to these equations. The polar coordinate system r, 8 will permit meeting
these objectives and will be used in the remainder of this work.

When the differential equation (2) is transformed to polar coordinates, the result is:

K
2

[ ( 0
2

1 0 1 0
2

)V4rt+i2t? aV
2
rt+ 2),cos28 - or2 +; or + r2 a82 rt

. (1 02 10) ]+4A.S1028 - --- - rt = 0
r 08 or 08



where
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A = 1(1 + a/b) and a = I-a/b.

METHOD OF SOLUTION

As a first step in the solution of equation (4), we separate variables r, 8 by postulating a
solution in the form of a harmonic series:

±oo
IJ = L Rn(r) cos (n8).

n~O,± 1,±2,
(5)

Similar solutions may also be written in terms of sin series; however, to simplify the dis­
cussion in this work, we will restrict our attention to the cos series. The use of both positive
and negative integer values of n leads to some simplifications in the subsequent develop­
ment of the differential equations. When equation (5) is substituted in equation (4), and
we shift indices to obtain a common factor cos n8, the result is:

±oo {(d2 1d n
2)2L -+---- R

n~O,±l,±2,... dr2 r dr r2 n

iK
2

[ (d
2

1 d n
2

) 1( d
2

(2n-3) d n(n-2))
+-22 a -d2+--d-2 Rn-/I. -d2-----d+--2- Rn- 2a r rrr r r r r

- ,(~ (2n+3) ~ n(n+2))R]} II = °
/I. d 2+ d + 2 n+ 2 cos nu .r r r r

(6)

Equation (6) may be satisfied if we require that the coefficient ofcos n8 vanish identically for
each positive and negative value of n. Thus, we obtain:

(
d2 1 d n

2
) 2 iK

2
[ (d

2
1 d n

2
)-+- --- R +- a -+---- R

dr2 r dr r2 n 2a2 dr2 r dr r2 n

-A(~- (2n-3) ~ n(n-2))
d 2 d + 2 Rn - 2r r r r

- (~ (2n+3) ~ n(n+2)) ] _
A d 2 + d + 2 Rn + 2 - 0,r r r r

(7)

n = 0, ±1, ±2, ... ±OO.

Equation (7) produces solutions R n for both positive and negative n; however, the only
significant solutions are expressed as:

Rn = Rn+R- n. (8)

Equation (7) represents a set of ordinary differential equations, coupled together in
adjoining values of n. Since the differential equation for Rn is coupled only to those for
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Rn + 2 and Rn - 2, the equations for even integer values of n form a separate set, independent
of those for odd integer values of n. Thus, solutions for even and odd values of n must be
developed independently; however, the technique used in developing the two sets of
solutions is identical.

Equation (7) may be written in slightly simpler form by the introduction of some new
notation. We let:

With the use of this notation, equation (7) becomes:

4 2 [d2
(2n-3) d n(n-2)]

[Vn +o:Vn]Rn-A d~2--~- d~+-~-2- Rn- 2

_1[~ (2n+3) ~ n(n+2)]R = °
/I. d~2 + ~ d~ + ~2 n+ 2 ' n = 0, ±1, ±2, ... ±00. (9)

Equation (9) is the basic form ofthe differential equation which will be used in the subsequent
development of the solutions.

Solution of infinite set of ordinary differential equations

The solution of the infinite set of ordinary differential equations is developed syste­
matically by postulating the solution in the form of an infinite power series, i.e. by the
Frobenius method [6]. The form of the postulated solution which leads to a general solu­
tion may be shown to be [2] :

Cfj 00

Rn=log~ L am,n~m+l;+ L bm,n~m+;
m=O,l,2... m=O,1,2 ...

(10)

where am,n, bm,n and' are as yet undetermined quantities, Substitution of equation (10) in
(9) produces results from which the following recurrence relationships between the con­
stants am,n and bm,n may be obtained:

and

am,n = -oam-2,n+ am-2,n-2+ am-2,n+2, m> Inl+2

-lnl+2<m<lnl
(11)

20m _ 2(m +n - 1) _ 2(m - n - 1) _
bm,n = (m + n)(m- n) am- 2,n - (m + n)(m + n _ 2) Qm- 2,n- 2 - (m _ n)(m _ n _ 2) Qm- 2,n+ 2

m> Inl+2,
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In equations (11) we have introduced the following notation: b = a/A, iii = m+', where
iii is an integer ranging from - 00 to 00,

and

bm,. =

iii> Inl+2

-lnl+2 < iii < Inl

iii> Inl+2.
b

o
.• ~ ~. (~i:(T)J"0 ..

Recurrence equations (11) indicate that each am,. or bm,. depends for its value on either 3
or 6 other constants having a lesser value of the index iii, However, it may be shown that
arbitrary values may be assigned to certain constants without violating equation (10);
therefore, the application of recurrence equations (11) begins from these arbitrary constants,
Four such arbitrary constants exist for each value of n and these are shown schematically
in Fig. 2. As can be seen from Fig. 2 the arbitrary constants bm,. are located along diagonals
iii = ±n and iii = ±n+ 2. In addition, four specific am,. may be assigned arbitrary values;
these are ao,o, aO,2 , a_ t. t and at, t . The arbitrary constants bm,. on the diagonals iii = Inl and
iii = Inl +2 produce singular solutions, while the arbitrary constants on the diagonals
iii = -Inl and iii = -Inl +2 produce singular solutions. It may also be shown that all
bm,. in the region to the left of the diagonals iii = -Inl, and all am,. in the region to the left
of the diagonals iii = Inl, are identically zero.

The recurrence equations (11) may be applied repeatedly, starting from an arbitrary
constant, to produce a numerical answer corresponding to a specific geometrical parameter
a/b. However, in order to gain greater insight into the nature ofthe general solution, and in
order to develop a method of identifying singularities, we now use the recurrence equations
to develop an explicit expression for a general solution. The method used to accomplish
this end is essentially trial and inspection. A single am,. or bm,. to which an arbitrary value
may be assigned, is given the value unity, and all other arbitrary constants are set equal to
zero. The appropriate recurrence relationship is used repeatedly to establish the propaga­
tion pattern of the solution, and an attempt is then made to express the propagation
pattern explicitly.

The development of the recurrence equation into an explicit expression for a solution
is demonstrated for the cylinder (b --+ 00) whose geometry leads to somewhat simpler results
than the case ofgeneral a/b. For the cylinder, the!Y., Aand b assume the following values:

!Y. = 1,

We assign the value unity to an arbitrary bm,. on the diagonal iii = n and apply recurrence
equation (11) repeatedly. A typical pattern of numbers which results is shown in Fig. 3.
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FIG. 2. (a), (b) Arbitrary constants am•• and bm.•.
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FIG. 3. Propagation pattern of bm•• for a cylinder solution.
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The 0m.n shown for the illustration may be expressed explicitly by the relationship:

235

and

(
m- p -4)

0- = - (_I)(m+nl/2m.n m-n-4 '

2

m> n+2, p"# °

m= n p (12)

where the subscript p describes the specific value of n associated with the 0m.n which is
assigned the value unity. In equation (12) and in all subsequent expressions for the lim•n
and om.n' we use the following definitions of binomial coefficients and factorials:

(') .,I I.

j = (i-j)!j!'
i = 1,2, .. ,; j = 1,2" .. < i

(Oi) = 1,

(~) = I,

e) = 0,

O! = 1.

j=O

i=j=O

j < 0 or j > i

All regular and singular solutions for general alb are developed in a manner similar to that
shown for a portion of the cylinder solution; in each case, the resulting expression for the
am•n and bm,n involves binomial coefficients such as shown in equation (12). The solution 11
for a specific p is now written as:

p = 0,2,4. (13)

There are four arbitrary constants associated with each p, and these are designated A p ,

Bp , Cp and Dr Equation (13) contains only the even harmonics; a similar expression
exists which includes only the odd harmonics. The general solution for even harmonics,
derived from the postulated form ofsolution, equation (10), and valid for arbitrary alb, may
then be written as follows:
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For p = 0:
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1( ~)2 ±'x "" -
110 = Ao+Bo A."2 - _ L cosn(} __ L Nm,i

m

n-O,±2... m-lnl+4,6 ...

(
m-4 )(~ 2h) }ent(m-n-4l/2 2 2+

x L b(m-nl/2-1-2h

h=0,1,2,... ~+2h h
2

+Co 1-10g~+ _yo cosn(} [-210g~ __ I Nm,n~m
n-0,±2,... m-lnl+0,2 ...

(

m-2 ) (n )ent(m-nl/2 -2- ")-1 +2h,
x L - b(m-n)/2-2h

h=0,1,2 .... ~-1+2h h
2

+:» II+ __ L N m,n~m('Pm,n) 1

m-Inl +4,6 ...

enl(m-n-2l/4 ( m~4 ) (~-1 +2h)
x2 _ L n b(m- nl/2-1-2h

h-0,1,2, ... --1+2h h
2

+ log~ enl(~I-4)/4(~~4) (~+2h) b(m-n)/2-1-2h

h-O,l,... -+2h h
2

+ f: N m,n~m('Pm,nhl j,
m=lnl+4,6 ...

(14)
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Solutions similar to those in equation (14), and slightly more complex in form, may be
written for p > 2. In equation (14) we have introduced the following notation:

)}iiI2( _1)(iii +n112
N- =-::-=,.,---'-:-::-:c'-::-:----,-:-:-::-

m.n 2m[(m +n)/2] ![(m - n)/2] !

iii ±(s-4\

" "(5 ) (_1)(iii+n-s-tlI 2
('I'iii••h.l = L, L, s,rt

s"'4,6 .... r=O.±I ....

(
m-s )(n-~+ i

h)enl(m-n+r-sI14 2 2-
x _ L n-t (5<iii-n+l- sill - 2h

h-O.1,1.... __ +2h h
2 1

2bs _ 2(s+t-l) _
(Ss,r)J,2 = (s + t)(s _ t)(as - 2.,)1,1 - (s+tf(s +t- 2)(as - 2.1 - z>t.z

2(s-t-l) _
(s - t)(s - t _ 2) (as - 2,r+2k2

ent( ) = nearest integer equal to or less than ( ).

The solution expressed by equation (19) can be shown [2] to correctly reduce to the
known solutions for a spherical cap, alb = - 1, and for the circular plate, for which both
a and b -> 00.

Particular solutions

In addition to the solutions to the homogeneous equations, we now seek to obtain
particular solutions to equation (1). A particular solution, expressed in polar coordinates,
which will satisfy equation (1) for a uniformly distributed normal load q is:

-qar2

'1 = -4-(1- cos 20). (15)

For the case of a uniform temperature, 1; the right sides of equation (1) vanish identically
and the effect of temperature is felt only through the expressions for strain in the consti­
tutive equations, i.e. the additional strain due to temperature is expressed as:

E, = Eo = rl.T. (16)

For the case of a temperature gradient across the shell, Tit, equations (1) are again homo­
geneous and the influence of the temperature gradient is felt principally through an added
term in the expression for the bending moment:

-KiXT(1 +v)
M =------, t (17)

The three cases ofdistributed loading, for which equations (15H 17) are particular solutions,
are used to obtain solutions for the concentrated form of a similar loading, i.e. the concen­
trated normal force P, the concentrated thermal load J1 (plane hot spot) and the concen­
trated thermal gradient fi (bending hot spot).
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(i8)

Stress resultants and displacements
The solution 1] contains terms with both real and imaginary coefficients. The real and

imaginary parts of the solution are associated with corresponding parts in the definitions
of '1, equations (3), to obtain real expressions for (f) and w. Solutions generated from (3a)
will be written with constants A', ... and those generated from (3b) with constants A", ....
The stress resultants are obtained by substituting in the appropriate relationships involving
(f) and w:

1 1
N, = _.(f) ,+-z(f).88

r . r

N IJ = (f)",

1 1
N flr = 2(f)./I--<1>.8r

r r

M r = -K[W.,,+v(~;r+ :2 W.O)J

M r8 = -(1-V)KUW.,o }2 W.OJ

M o = -K[~W.,+ rlzw'08+vw."J

Qr = -K[W.rrr+~W.rr ~~W.r+ r12W,1J8' ~W.88J

Qo = -K[~W.rro+ r~w./I'+ r13w.08o}

The positive direction of the stress resultants is shown in Fig, 4, The strains are obtained
through the use of the constitutive relationships:

1
£r = Et(Nr-vNo)

1
£8 = -(No-vN,)

Et

2(1 + v)
')'rO = Et N,o' (19)

x

FIG. 4. Stress resultants acting on shell element.
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Displacements are obtained by successive integration of the kinematic equations:

u,r = Cr +WZ,rr

(
Z'88)V,8 = re8-u+w z,r+7

U,8 V (Z,8r Z,8)]J = v +----2w --- .
r8 ,r r r r r 2

239

(20)

When the first two of equations (20) are integrated to produce u and v, arbitrary functions
of integration are introduced; the third of equations (20) is used to evaluate these functions,
Although the expressions for displacement are cumbersome and are not shown here, the
procedure used to obtain them is completely straightforward, In most instances, the
arbitrary functions of integration are rigid-body displacements, which may be discarded;
in several instances, however, the arbitrary functions include discontinuous displacements,
commonly called dislocations [7J and these are retained in the solution.

Convergence of solutions
The solutions such as expressed by equation (14) are written in terms of infinite series

which have been assumed uniformly convergent during the initial stages of manipulating
the governing differential equations, Since each term of the solution has an explicit expres­
sion, the proof of convergence of the solutions may be performed in a straightforward
manner, by means ofthe "ratio test" [IOJ for the power series, and by means of the "Weier­
strass comparison test" [10J for the harmonic series, Absolute and uniform convergence
has been demonstrated [2J for both the regular and the singular solutions, for all values
alb, and for values ofradius within the scope ofshallow shell theory. The rate ofconvergence
in each instance is at least as rapid as l/n 2

,

IDENTIFICATION OF SINGULARITIES

The method used to identify the simpler singularities is to obtain the solution for a shell
with distributed loading over a finite area, and then to reduce the area of loading while
maintaining the load resultant constant. The result of this limiting process, as the loaded
area approaches zero, is the desired singular solution associated with the applied load
resultant. The term loading is here intended to denote both the application of force and of
heat.

As a specific example, the concentrated force singularity is identified by first finding the
solution for a shell having a uniformly distributed loading q over a specified region, r < p.

This is illustrated in Fig, 5, The required solution is obtained by letting p ~ 0 and q ~ 00

so that the load resultant, np2q = P, remains a constant.
In order to find the solution for the distributed loading, the shell is divided into two

zones; zone 1 has a uniformly distributed load and zone 2 is unlOaded, A solution is then
found for each ofthe shells individually. The arbitrary constants ofthe two sets of solutions
are determined by fulfilling the boundary conditions at the outer boundary of zone 2, and
by matching appropriate boundary conditions at the common boundary of the two zones,
i.e, at r = p,

The stress resultants and displacements in both regions of the shell are required to be
finite for the distributed loading, Therefore, the total solution in zone 1 consists of those
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j4- ZONE 2

FIG. 5. Distributed loading applied to zone 1 of shell.

solutions to the homogeneous equation (4) which are free of singularities at the origin
(constants A and B), plus a particular solution corresponding to the external load. In
general, the solution for zone 2 consists of all solutions to the homogeneous differential
equation. Certain simplifications are possible, however, if we restrict the solutions for zone 2
to the set of singular solutions (constants C and D), and leave the boundary conditions
at the other boundary unspecified. Specific boundary conditions at this boundary can
subsequently be fulfilled by the addition of regular solutions to the combined shell, zones
1 and 2. Since the regular solutions which we add do not have singularities at the origin,
their influence will not be felt when we apply the limiting process, p ...... O.

The constants of the solution are determined by matching appropriate boundary
conditions at the common boundary of the two zones of the shell. These are:

(a) Wt = W2

(b) (w.rh = (w,rh

(c) (Mr)t = (Mrh

(d) (Qrh = (Qrh

(e) (Nr)t = (Nrh

([) (Nr9)t = (Nr9h

(g) U I = U2

(h) VI = V2'

(21)

Subscripts 1 and 2 refer to the two zones of the shell. The boundary equations (21), when
written out in detail, are rather cumbersome and will not be shown here. Each equation
includes an infinite number of harmonics, and 8 times infinitely many constants. A direct
solution for the constants in these equations is difficult. However, the boundary equations
are made considerably simpler if we apply the limiting process, such that the area ofloading
approaches zero, prior to solving for the constants. This may legitimately be done as long
as the determinant of the coefficients of the unknown constants remains non-singular, and
the terms in the equations involving q, Tand T do not all vanish. When the limiting process
is applied to the equations, it may be shown [2] that all constants, except for the first 7,
approach zero as a limiting value. The first 7 constants are evaluated by solving surviving
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portions of the first 7 equations:

(a) Ao+(Bop2)- Co log p
(b) 2(Bop2)-Co

(c) - 2(1 +v) K(Bop2) - K(1- v)Co

=0

o
K(1 +v),u

nt

241

(d)

(e)

P
2n

=0 (22)

(f)

(g)
-et

C"- 0
2a

2(1-v)( II 2) (1+v)c, P
--- Bop +-- 0 = --

Et Et n

4Do--=0.
Et

Equations (22) may be solved for the constants, in a straightforward manner, using each of
the particular solutions individually. The results of interest are only those associated with
the outer region 2, since the constants for region 1 describe the shell for only a vanishingly
small region. The results for the constants of region 2 are:

1. Concentrated force

, P
Do = 8nK

Co Co = Do = O.

2. Plane hot spot

Co = -PEt
2n

D' = -petEt
o 16nKa

Co = Do = O.

3. Bending hot spot

C" _ -(l+v),u
o - 2nt

Co = Do = O.

The complete solution for the concentrated loading may now be determined from the
appropriate values of cf) and w. The leading terms of the series for these quantities are:
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1. Concentrated force
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EtP(1- a/b)[ 41 ]
256naK r og r + ...

P 2
W = -[r log r+ .. .].

8nK

2. Plane hot spot

pEt
<1>= --[logr+ ...]

2n

w = -l::~a{[(1-~) -1( 1+~) cos 28}2 l0g r+,.-}.

3. Bending hot spot

_ (l +v)E,il(l-ajb)[ 21 ]
<I> - 6 r ogr+ ...

1 na

(1 +v),il
w = ---[logr+,..J.

2m

The complete solutions may be obtained by substituting the values of the appropriate
constants in the solutions for 1] given by equation (14).

NUMERICAL RESULTS

To illustrate the use of the solutions such as given by equation (14), we have selected the
case of the concentrated force acting on shells with variable a/b. The boundary condi­
tions selected for the outer edge of the shell are those associated with a built in edge, i.e.
W = w,r = U = v = O. Figure 6 illustrates the loading and edge support prevailing for the
numerical examples.

p

z

FIG. 6. Loading and support for shell with concentrated load.
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In our previous discussion, we have shown that the only singular solution which has
non zero value for the region outside of the area of loading is that associated with the
constant Do, which has value:

Do = P/8nK.

In order to fulfill the specified boundary conditions at the edge of the shell, we now add all
the regular solutions applicable to zone 2. When the boundary conditions are written in
terms ofall applicable solutions in zone 2, we obtain 4separate equations for each harmonic:
each of the equations contains a contribution from the singular solution, as well as con­
tributions from each of the regular solutions headed by constants A~, A;, B~andB;, where
p = 0,2,4, ... w. Although the exact solution to the infinite set of equations may not be
obtained readily, a good approximation to the solution can be made for most cases of
interest by considering only finite segments of the set of equations. Thus, for the case of the
concentrated load, we obtain an approximate solution by considering only the first 19
equations and the first 19 constants. This has been shown [2] to produce accurate results
for all ratios alb.

For the numerical example, we have chosen a dimensionless outer edge radius cro = 5,
and a value of Poisson's ratio v = 0.3. The power series for each harmonic, for both regular
and singular solutions, were evaluated with the help of an electronic computer. The power
series, which consist of terms with alternating signs, were truncated when succeeding terms
progressively decreased in magnitude, and each additional term was < 10- 6 times the
accumulated sum. The solution of the simultaneous equations, and the final evaluation
of w, IV., and the stress resultants was also performed by the computer. The stress resultants
and the displacement w, obtained for these calculations. are shown in Figs. 7-12. In Figs.
7-9, we have also shown the appropriate values for the flat, circular plate, as a basis for
comparing similar curves for the shells. The solutions for the plate stem from the well known
solution for the normal displacement [11]:

Pr5 [ (r) 2 ( r ) ( r ) 2]W = --- 2 - log -- + 1- - .
16nK ro /0 ro ..

Although the circular plate does not completely fit the pattern of the shells being studied,
it does represent a limiting case, and hence is used as a basis for comparison.

Figure 7, which presents the normal displacement was a function of the radius ratio
rlr0' for various values of alb, demonstrates the effect of shell geometry on the overall stiff­
ness, or the effective spring constant, of the various shells. The stiffness ofall shells is seen to
be considerably greater than that of the circular plate; of the shell forms studied, the
sphere exhibits the greatest stiffness, while the cylinder exhibits the least stiffness. All shell
forms exhibit negative displacements for the outer portion of the shell, in contrast to the
plate which has everywhere a positive displacement for r < ro.

Figure 8, which presents the bending moment M, as a function of radius ratio, indicates
that the cylinder has the largest value of edge moment. while the sphere has the least value.
The general pattern of distribution of moments is quite similar for all the shells. although
considerably different from that of the plate. The bending moment M" for the shells as well
as for the plate, approaches infinity as r/ro-+ O. However, the value of M, reduces in value
much more rapidly for the shells than it does for the plate, as r increases in value from the
origin; hence, the effect of bending in the region surrounding the point of loading is con-
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siderably more localized for the case of the shells than it is for the plate. The distribution
of Q" shown in Fig. 9, also indicates that the shells behave similar to the plate near the
origin, but deviate in behavior rather rapidly as r/ro increases.

Figures 10-12 display the distribution of the in-plane stress resultants N" No and
N,o. Although the in-plane force N" shown in Fig. 10, does not appear particularly sensitive
to shell form, the distribution of No, and N ,0' is significantly different for the various ratios
a/b. At the origin, r/ro = 0, the shells of negative curvature exhibit larger shear forces
N,o' and smaller tangential forces N" than do shells of positive curvature. For the cylinder,
the values of No and N ,0 generally are intermediate in value between those for shells of
positive curvature and those of negative curvature.
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FIG. 10. Tangential force N, vs. r/ro, for concentrated force applied to shallow shells with variable a/b.
Section taken through e = o.
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AOCTpaKT--j],bIIOTCll peweHllll,nnll HeocpBo-cHMMeTpH'IeCKOH nonoroH 060JlO'lKH, nOABep)l(eHHOH AeHcTBlIlO
HOpMaJIbHOH nOBepXHOCTHOH Hnl1 TepMI1'1eCKOH Harpy30K. OTO)l(AeCTBJllIeTClI cllHrYJlllpHble peweHlul,
cooTBecTByKlWHe COCpeAOTO'leHHOH HopManbHoi\ HarpY3Ke COCpe,noTo'leHHoMy HarpeBy 1I COCpeAOTO­
'1eHHoMy TepMH'IecKoMy rpaAHeHTY, nyTcM orpaHI1'1eHl1l1 npol.lecca, rrpl1MeH»eMoro ,llJlll rrOJlHoi\ CI1CTeMbl
CI1HrYJlllpHblX peWeHI1i\. j],aKlTclI '1HcneHllble pe3yJlbTaTbl, Anll cJlY'lall HopManbHoii, cocpeAOTO'leHHlIi\
Harp'l3KH, ,neli:cTByKlweli: Ha nOJlpryKl 060nO'lKY, o6na,naKlll.{yKl OTplll.laTenbHoli:, HyneBoil. IlJlI1 nono)l(­
IlTenbHoR KPI1BI13HOi\ raycca.

IIoBe,o:eHHe rronoroli: 060nO'lKI1, B coce,nCTBe npHnO)l(eHHoil. cocpe,noTO'leHHoi!. HarpY3KH, rroxo)l(e K
TaKoMy )I(e nOBe,neMl1rO AI1CKa, no,nBep)l(eHHOrO TOil. caMoli: HarpY3Ke.

PacrrpocTpaHlIeTcll BJlHlIHHe cocpeAOTO'leHHOH CI1J1bl Ha BCKl WllPOKYIO 06J1aCTb o60nO'IeK c OTPll1.\­
aTenbHOH KPHBH3HIOli: raycca, no cpaBHellHKl c 060JlO'lKaMIl c nOnO)l(HTeJlbHOH KPllBH3HOH raycca.
O,nHaKO ,nn» cny'la» COCpe,nOTO'leHHOH HarpY3KH, rrapaMeTpbl Hanpe)l(eHHH II H3rHGoB 060JlO'lKH, He
H3MeHlIIOTc» cTpeMHTeJlBHO, ecnH KpllBH3Ha 060nO'lKH raycca H3MeHlIeT 3Ha'leHlfe H3 rrOJlO)l(HTenbHoro
K OTpHUaTeJlbHoMy.


